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Abstract This paper presents the hydrodynamic and thermal behavior of fluid that surrounds an
isothermal circular cylinder in a square cavity. Simulations were carried out for four aspect ratios
(defined by L/D ), i.e. 2.0, 3.0, 4.0, 5.0. An incompressible flow of Newtonian fluid is considered.
Prandtl number is assumed constant and equal to 1. Effect of eccentric positions (1¼20.5 and
0.5) of the cylinder with respect to the cavity was carried out at L=D ¼ 2.0. Predicted results for
eccentric cases are compared with concentric ð1 ¼ 0.0) case. Grashof number is based on the
diameter of the cylinder and ranges from 10 to 106. The control volume based finite volume
method is used to discretize the governing equations in cylindrical coordinate. SIMPLE algorithm
is used. A collocated variable arrangement is considered and SIP solver is employed to solve the
system of equations. Parametric results are presented in the form of streamlines and isothermal
lines for both eccentric and concentric positions. Heat transfer distribution along the perimeter of
the cylinder is presented in the form of local Nusselt number. Predicted results show good
agreement with the results described by Cesini et al. (1999).
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Nomenclature
A ¼ coefficient matrix
Cp ¼ specific heat
D ¼ diameter of the cylinder
g ¼ gravity acceleration
Gr ¼ Grashof number
h ¼ heat transfer coefficient
k ¼ thermal conductivity of fluid
L ¼ length & width of walls
Nu ¼ Nusselt number
n ¼ surface normal
Pr ¼ Prandtl number
r ¼ radial coordinate
R ¼ dimensionless radial coordinate

P ¼ pressure
P* ¼ modified pressure
T ¼ temperature
u ¼ radial velocity component
v ¼ tangential velocity component
Ur ¼ dimensionless radial velocity
Uu ¼ dimensionless tangential velocity

Greek symbols
a ¼ thermal diffusivity
b ¼ thermal expansion coefficient
1 ¼ eccentricity (see equation (16))
q ¼ any variable

Effect of aspect
ratio

855

Received January 2002
Accepted May 2002

International Journal of Numerical
Methods for Heat & Fluid Flow,
Vol. 12 No. 7, 2002, pp. 855-869.
q MCB UP Limited, 0961-5539

DOI 10.1108/09615530210443061



1. Introduction
Heat transfer from circular cylinder in a cavity has many engineering
applications like industrial heat exchanger, evaporator and condenser unit,
cooling system of machine parts, electronic packages, etc. Numerous literatures
are available for the concentric cylinder in a rectangular cavity at different
boundary conditions. Eccentric cases are also important and have not been
studied to a great extent. Natural convection from single horizontal circular
cylinder (Cesini et al., 1999; Farouk and Guceri, 1981) and from square cylinder
(Tasnim and Mahmud, 1999) in an enclosed space has been investigated in the
past. Some numerical and experimental investigations are available (Prusa and
Yao, 1983; Kuhen and Goldstein, 1976; 1978) that considered heat transfer
inside concentric and eccentric cylindrical annular space. In the present paper,
heat transfer from a horizontal circular cylinder placed inside a square
enclosure with two isothermal vertical walls and two adiabatic horizontal walls
is investigated numerically. Cylindrical surface is taken as isothermal. The
objective of the present investigation is to observe the heat transfer
performance around a cylinder at two eccentric (one positive and one
negative) positions and concentric position at different Grashof numbers and
aspect ratio (L/D ). Only the effect of vertical eccentricity is considered in the
present investigation.

2. Mathematical modeling
In the present investigation, we used the conservation equations (continuity,
momentum and energy) in cylindrical coordinates of the following form:
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F ¼ total mass flux
V ¼ convective or diffusive flux
m ¼ dynamic viscosity of fluid
r ¼ density of fluid
c ¼ stream function
s ¼ an index
u ¼ tangential coordinate
Q ¼ dimensionless temperature

Subscripts/superscripts
av ¼ average value
D ¼ based on diameter
C ¼ at cylinder wall
L ¼ local value
ref ¼ reference value
w ¼ at cavity wall
1 ¼ ambient condition
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By introducing the following dimensionless variables:
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Neglecting compression work and viscous dissipation, the energy equation
reduces to:
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Above equations are discretized using control volume based finite volume
method with collocated variable arrangement. The transport equations are
integrated over a finite number of control volumes, leading to a balance
equation of fluxes (F) through the control volume (CV) faces, and volumetric
sources S (here pressure and bouncy forces). Figure 1(a) and (b) shows the grid
structure with computational domain. The computational domain of
integration is divided into nonuniform control volumes, where more grids
are adopted near the cylinder surface. Figure 2 shows an individual CV of the
domain. The balance flux equation can be written in the following form:

Fe 2Fw þFn 2Fs ¼ S ð7Þ

Mass fluxes through the west face ‘w’ and the south face ‘s’ (see Figure 2) are
calculated using the following equations:
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_mw ¼ ðrUrrduÞw ð8Þ

_ms ¼ ðrUudrÞs ð9Þ

where Ur and Uu are the radial and tangential velocity components and are
considered to represent the mean values over the CV face. These values are
calculated using an appropriate interpolation formula defined by Ferziger and
Peric (1996). Then the convective flux of a variable w is evaluated as

VC
w ¼ _mww ð10Þ

where ww stands for the mean value of the transported variables (Ur, Uu or T )
at the CV face ‘w’. The estimate for this value is expressed in terms of the nodal
values by employing the central difference scheme (CDS), which implies linear

Figure 1.
(a) Numerical grid
structure and (b)
computational domain
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interpolation (Ferziger and Peric, 1996) between nodes W and P. The diffusive
flux is estimated using the CDS scheme and can be written in the following
form:

VD
w ¼ 2

m

Pr


 �wp 2 ww

rp 2 rw
rdu ð11Þ

The source terms are integrated over the cell volume. This is done by
evaluating the specific source at the central point P, which is then taken to
represent the mean value over the whole CV – hence the integration involves
only multiplication of the nodal value by the cell volume. The source of the
radial momentum then becomes:

S ¼ rduðPe 2 PwÞ þ r0bgrðTp 2 T0Þrdudr ð12Þ

Finally equation (7) can be written in the following form

APwP þ
m

X
Amwm ¼ Sw ð13Þ

where m ¼ E; W, N, S are the four immediate neighbors of point P, and w
stands for Ur, Uu or T.

SIMPLE algorithm (Patankar, 1980) is used for the solution of coupled
velocity, temperature, and pressure equations. Solution starts with a guessed
pressure field. In each iteration, value of pressure, mass flux and other
variables are taken from previous iteration and using these values momentum
equations are assembled. This is solved by one inner iteration of SIP algorithm
(Ferziger and Peric, 1996). Calculated velocity field is used to determine new

Figure 2.
A typical CV showing

different parameters
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mass fluxes. Pressure correction equation is then solved. After pressure and
velocity correction, temperature equation is assembled and solved. Solution
procedures with detailed algorithm are available (Patankar, 1980; Ferziger and
Peric, 1996). The convergence criterion used here is that the sum of absolute
residuals in all equations is reduced by at least six orders of magnitude. For
further stabilization of numerical solution, underrelaxation factors of 0.7, 0.7,
0.2 and 0.9 are used for velocities, pressure, and temperature equations. For the
present problem, boundary conditions are:

At cylinder wall : R ¼ 1; Ur ¼ Uu ¼ 0 and Q ¼ 1 ð14Þ

The boundary conditions for square cavity wall is as follows:

At R ¼
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ð15Þ

Ur ¼ Uu ¼ 0:0, Q ¼ 0:0 at s ¼ 1; 2; 5; 6 and ›Q=›n ¼ 0:0 at s ¼ 0; 3; 4; 7
where s ¼ Int½4u=p�.

3. Results and discussions
Numerical grid structure and computational domain with different geometrical
variables and boundary conditions used in present investigation are shown in
Figure 1(a) and (b). The diameter of the cylinder is D and width and height of
the square enclosure is L. The cylinder surface is isothermal with temperature
TC. Two vertical walls of the enclosure are also isothermal with temperature
TW. The initial fluid temperature is T1. The top and bottom horizontal walls
are considered adiabatic. Four grid sizes are chosen to carry out present
simulation. In Figure 3(a), local Nusselt number distribution is presented for
Gr ¼ 104 for four prescribed grid sizes. Except for the coarse grid ð20 £ 10Þ
solution, the [NuD]L–u profiles for the remaining three grid sizes (e.g. 40 £ 20;
80 £ 40; and 160 £ 80) coincide with each other. Throughout this paper, results
of 80 £ 40 grid are presented. Predicted data from the present study is
compared with the work of Cesini et al. (1999) in Figure 3(b). Cesini et al. (1999)
finite element method is based on the streamfunction–vorticity formulation of
the momentum equation. For both cases (present prediction and results from
Cesini et al. (1999)) Prandtl number of the fluid is 1.0. This comparison shows
excellent agreement.

3.1 Effect of aspect ratio
The geometric parameter, aspect ratio, is defined by L/D. Simulation was
carried out for four different L/D ratios (2.0, 3.0, 4.0 and 5.0). Figure 4(a) and (b)
shows the variation of local Nusselt number (based on the diameter) along
the perimeter of the cylinder for two selected Grashof numbers 102 and 104.
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Figure 5 shows the variation of global value of Nusselt number as a function of
Grashof number. Average heat transfer shows the linear variation with Grashof
number in log-log plot. A critical range of Grashof number ð2 £ 103-3 £ 103Þ is
numerically determined. Below this range, lower L/D shows higher heat
transfer rate and above this range the reverse scenario occurred. Below the
critical range, viscous force is high and heat transfer is mainly dominated by
conduction from one layer of fluid to another. In lower L/D, space between
cylinder and cavity wall is small thus showing higher heat transfer rate.
Buoyancy force dominates over viscous force after upper critical range.
Convective currents are retarded due to narrow space at lower L/D compared to
the higher values of L/D. So, average heat transfer falls here for lower L/D ratio.

Figure 3.
(a) Grid sensitivity test

and (b) code verification
test
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3.2 Effect of eccentricity
Effect of eccentricity at four different Grashof numbers on local heat transfer is
shown in Figure 6(a)-(d). At a very small value of Grashof number (101), viscous
force dominates and the heat transfer around the cylinder is similar to the
conduction. At 1 ¼ 0:0; distribution pattern is symmetrical about the point
located at 908 angular position. At positive eccentricity 1 ¼ 0:5; the gap
between the cylinder and the upper adiabatic wall is smaller compared to the
gap between the cylinder and the lower adiabatic wall. At the upper side,
temperature gradient normal to the cylinder surface is comparatively higher
than the lower surface, showing higher heat transfer rate before the point

Figure 4.
Nusselt number
distribution along the
perimeter at (a) Gr ¼ 102

and (b) Gr ¼ 104
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located at 908. However, this scenario reverses at negative eccentricity 1 ¼ 20:5:
At high Grashof number, buoyancy force starts to dominate both the flow and
thermal fields. As TC . TW; fluid inside the enclosure rises upward along the
cylindrical surface and reaches the top adiabatic wall and is deflected away

Figure 5.
Average Nusselt number
as a function of Grashof

number

Figure 6.
Local Nusselt number

distribution at different
eccentricity for

L=D ¼ 2:0
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from the cylinder. Upward velocity of flow increases with the increase of
Grashof number. Temperature gradient in such cases is higher at the bottom of
the cylinder, showing higher heat transfer rate. Positive eccentricity still shows
a higher rate of heat transfer at the 08 position due to smaller gap between
cylinder and top adiabatic surface then starts to fall to a minimum point and
again rises.

3.3 Flow and thermal fields
Flow and thermal fields are presented in the form of constant streamlines and
isothermal lines for different eccentricity in Figures 7-9. For convenience of
presentation, both streamlines and isothermal lines are plotted opposite to each
other about the symmetrical axis on the same figure. The following subsections
will give a brief idea of flow and thermal fields at different eccentric position of
cylinder.

(a) Negative eccentricity, 1 ¼ 20:5: Eccentricity is measured from the center
of the enclosure vertically upward (positive) or vertically downward (negative).
If O is the center of the enclosure and �O is the new position of the center of the
cylinder vertically upward or downward, then eccentricity is defined as

1 ¼
L 2 D

R

O �O

D

� �
ð16Þ

where R is the radius of the cylinder. Figure 7 shows the flow and thermal field
for negative eccentricity. At Gr ¼ 101; high viscous force produces a very weak
circulation with almost negligible velocity components. Isothermal lines show
the characteristics of conduction. Near the bottom wall, temperature gradient
normal to the cylindrical surface is higher and decreases gradually along the
perimeter. This bottom part of the cylinder shows higher value of heat transfer
as shown in Figure 6(a). At Gr ¼ 104; circulatory vortex has higher strength at
the upper part of the cylinder making thermal boundary layer. At Gr ¼ 105;
temperature contour swirls due to high convective current.

(b) Zero eccentricity, 1 ¼ 0:0: This is the case of concentric cylinder in a
cavity. Flow and thermal fields are presented in Figure 8(a)-(c). Two
recirculation zones are clearly shown beside the cylinder, growing in intensity
with increasing Grashof numbers. The temperature distribution on the upper
part of the cavity is characteristic of natural convection from circular objects.
With the increase of Grashof number, buoyancy force starts to dominate the
flow field. Upward flow velocity increases shifting the core of the circulatory
zone upward. At Gr ¼ 105; intensity of circulation is higher at the upper
portion of the enclosure showing only one kidney-shaped core. It is clear from
the Figure 8(c) that temperature gradient increases along the perimeter of the
cylinder (u increasing) thus showing higher heat transfer rate (Figure 6 (d)).

(c) Positive eccentricity, 1 ¼ 0:5: Flow and thermal fields for positive
eccentricity are shown in Figure 9(a)-(c). At Gr ¼ 101; circulation zone shows

HFF
12,7

864



just opposite nature of negative eccentricity. Temperature gradient is higher at
the upper portion of the cylinder showing higher heat transfer rate. At Gr ¼
104; core of the circulatory vortex starts to divide into two distinct parts. But at
Gr ¼ 105; circulatory zone shows only one core and isothermal lines give clear
indication of the formation of thermal boundary layer. A dead zone is observed
at the uppermost portion of the cylinder due to the small gap between cylinder

Figure 7.
Isothermal lines and

streamlines for
1 ¼ 20:5 and

(a) Gr ¼ 10;
(b) Gr ¼ 104; and

(c) Gr ¼ 105
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surface and enclosure wall. This dead zone is responsible for initial falling
tendency of heat transfer shown in Figure 6(d).

Average heat transfer
Average heat transfer is presented in terms of average Nusselt number in
Figure 10 as a function of Grashof number at three different eccentricities.
Concentric case ð1 ¼ 0:0Þ shows lower value of average heat transfer compared

Figure 8.
Isothermal lines and
streamlines for 1 ¼ 0:0
and (a) Gr ¼ 10;
(b) Gr ¼ 104; and
(c) Gr ¼ 105
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to the same at positive and negative eccentricity. For the range Gr ¼ 101-106;
the average heat transfer rate is higher at positive eccentricity for L=D ¼ 2:0:

Conclusions
Heat transfer around a circular cylinder at two different eccentric positions and
concentric position in a square enclosure is studied for a particular aspect ratio

Figure 9.
Isothermal lines

and streamlines for
1 ¼ 0:5 and (a) Gr ¼ 10;

(b) Gr ¼ 104; and
(c) Gr ¼ 105
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ðL=D ¼ 2:0Þ: Effect of L/D ratio on heat transfer is also presented.
Eccentricity greatly affects the flow and thermal fields as well as the heat
transfer distribution. Eccentric positions of the cylinder show higher heat
transfer rate than concentric position. At all values of 1, circulatory zone with
one core is observed near the upper part of the cylinder. Again for 1 ¼ 0:0; a
critical range of Grashof number is identified below which heat transfer is
higher for lower L/D ratio and above which heat transfer is lower for lower
L/D ratio.
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